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Abstract

The exponential rise in the availability of data over the past decade has fuelled research in

deep learning. While supervised deep learning models achieve near-human performance using

annotated data, it comes with an additional cost of annotation. Additionally, there could be

ambiguity in annotations due to human error. While an image classification task assigns one

label to the whole image, as we increase the granularity of the task to landmark estimation,

the annotator needs to pinpoint the landmark accurately. The self-supervised learning (SSL)

paradigm overcomes these concerns by using pretext task based objectives to learn from large-

scale unannotated data. In this work, we show how to extract relevant signals from pretrained

self-supervised networks for a) a discriminative task of landmark estimation under limited anno-

tations, and b) increasing perceptual quality of the images generated by generative adversarial

network.

In this first part, we demonstrate the emergent correspondence tracking properties in the

non-contrastive SSL framework. Using this as supervision, we propose LEAD which is an

approach to discover landmarks from an unannotated collection of category-specific images.

Existing works in self-supervised landmark detection are based on learning dense (pixel-level)

feature representations from an image, which are further used to learn landmarks in a semi-

supervised manner. While there have been advances in self-supervised learning of image features

for instance-level tasks like classification, these methods do not ensure dense equivariant repre-

sentations. The property of equivariance is of interest for dense prediction tasks like landmark

estimation. In this work, we introduce an approach to enhance the learning of dense equivari-

ant representations in a self-supervised fashion. We follow a two-stage training approach: first,

we train a network using the BYOL [34] objective which operates at an instance level. The

correspondences obtained through this network are further used to train a dense and compact

representation of the image using a lightweight network. We show that having such a prior in

the feature extractor helps in landmark detection, even under a drastically limited number of

annotations while also improving generalization across scale variations.

Next, we utilize the rich feature space from the SSL framework as a “naturalness” prior
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Abstract

to alleviate unnatural image generation from Generative Adversarial Networks (GAN), which

is a popular class of generative models. Progress in GANs has enabled the generation of

high-resolution photorealistic images of astonishing quality. StyleGANs allow for compelling

attribute modification on such images via mathematical operations on the latent style vectors

in the W/W+ space that effectively modulates the rich hierarchical representations of the gen-

erator. Such operations have recently been generalized beyond mere attribute swapping in the

original StyleGAN paper to include interpolations. In spite of many significant improvements

in StyleGANs, they are still seen to generate unnatural images. The quality of the generated

images is a function of, (a) richness of the hierarchical representations learned by the generator,

and, (b) linearity and smoothness of the style spaces. In this work, we propose Hierarchical Se-

mantic Regularizer (HSR) which aligns the hierarchical representations learnt by the generator

to corresponding powerful features learned by pretrained networks on large amounts of data.

HSR not only improves generator representations but also the linearity and smoothness of the

latent style spaces, leading to the generation of more natural-looking style-edited images. To

demonstrate improved linearity, we propose a novel metric - Attribute Linearity Score (ALS).

A significant reduction in the generation of unnatural images is corroborated by improvement

in the Perceptual Path Length (PPL) metric by 15% across different standard datasets while

simultaneously improving the linearity of attribute-change in the attribute editing tasks.
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Chapter 1

Introduction

The success of deep learning methods has led to deployable solutions in prominent computer

vision tasks such as object recognition [42, 97, 28, 102], object detection [87, 32, 88], semantic

segmentation [13, 14, 43]. This is driven by the data collected over the years at a massive scale.

Methods for the supervised learning paradigm are reliant on data sources which also provide

annotations. If the deep neural network trained in supervised fashion is able to comprehend

the underlying semantic concepts in the data, then it should be possible to transfer the trained

model to other tasks and datasets. However, the performance of the transferred model carries

a bias towards the original task or the data on which it was trained. Hence, this restricts the

usage of the models to the related task or data distributions.

Self-supervised learning (SSL) methods focus on designing tasks from unannotated data [53].

The principle behind designing such a task is to obtain supervision from unannotated data which

could make the model learn the underlying semantic concepts. The model is then transferred

to learn a useful downstream task, leading to competitive performance compared to the su-

pervised learning approaches. Self-supervised learning reduces the dependency over the labels.

Competitive performance of SSL methods hints that a large fraction of knowledge required to

solve a task can be extracted from the data even without access to its labels.

The research in self-supervised learning tasks has focused on downstream task of classifica-

tion. Annotation process for classification involves one label per image. Therefore, it is easier for

humans to annotate for classification and obtain large amount of annotated data. There have

been recent advances in adapting these techniques for detection and segmentation. Compared

to recognition where 1 label per image is required, getting annotations for detection (bounding

box per object in the image) and segmentation (pixel-wise annotations) is highly demanding

in terms of human labor cost as well as hours spent to annotate. Therefore, self-supervised

learning is useful to reduce the reliance on the annotations in such tasks.
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The self-supervised objectives have shown to be generalizable to task transfer. While these

are discriminative tasks, it is still an open question as to how can features learnt on such tasks

be used to improve the generative models.

Landmark Estimation. Image landmarks are distinct locations in an image that can provide

useful information about the object, like its shape and pose. For example, for face images, the

landmarks points can be the pupil of eyes, tip of the nose, and lip corners. Knowing the loca-

tions of facial landmarks can help in tasks like head pose estimation [37]. In general, landmarks

are used to predict camera pose using Structure-from-Motion [39]. Landmark detection is a well

studied problem in computer vision [132, 119, 131, 130, 29, 66] that was initially accomplished

using annotated data. Landmark annotation requires a person to accurately label the pixel loca-

tion where the landmark is present. This makes annotation a laborious, biased, and ambiguous

task, motivating the need for newer paradigms such as few-shot learning [133, 126, 100, 115]

and self-supervised learning [27, 127, 75, 44, 34].

Prior works in self-supervised landmark detection rely on the principles of reconstruc-

tion [130, 71] and equivariance [104, 106]. These methods are trained using dense objectives

that are satisfied by every pixel (or by every patch of pixels, due to downsampling). This tends

to capture only local information around each pixel, and is unaffected by structural changes in

the image (like patch shuffling). Recent progress in Self-supervised learning proposes pretext

tasks of instance-discriminative methods [44, 17, 19, 21, 16], which are shown to be superior

for the purpose of pre-training. In this work we seek to exploit the advantage offered by recent

works in contrastive learning to estimate landmarks over them.

Smoothening GAN Latent Space. Generative Adversarial Networks are at the forefront

of image synthesis models. There have been advances in the Generative Adversarial Networks

(GAN) to improve the photorealism of the generated images. StyleGAN [54, 56] is a landmark

work which innovates architectural aspects of GAN that improves the photorealism of the im-

ages. StyleGAN also introduces an interpretable latent space which can be used for downstream

image manipulation tasks [93, 92]. However, there exist two problems with StyleGAN, a) the

latent space of generator has a subspace that maps to unnatural images which do not resemble

the training data, and b) the image manipulation models assumes a linear model w.r.t. the

attribute, while there is no guarantee for that during the training of GAN. In this work, we

alleviate the first issue with the natural prior learned by SSL networks. We then explore the

relationship between naturalness of the image and smoothness of the latent space.

In summary, in this thesis we have looked into the problems of landmark estimation and

improving the latent space of GAN. We derive solutions to these problems from self-supervised

2



pretraining. The solutions to the first problem enables landmark estimation with few annotated

data. The solution to the second problem improves the GAN latent space which leads to

improved photorealism of the generated images as well as a more control in image manipulation

task. The rest of the chapters in this thesis are organized as follows: In Chapter 2, we

review background on self-supervised learning, landmark estimation and generative adversarial

networks. In Chapter 3, we present a our method LEAD, a self-supervised pretraining method

for landmark estimation. In Chapter 4, we improve the photorealism of generated images and

linearize the latent space of GAN by aligning the intermediate feature spaces of Generator and

self-supervised network. Finally, Chapter 5 describes our key contributions and possible future

directions.

3



Chapter 2

Related Work

While the research in self-supervised pretraining has mainly explored the downstream task of

classification, its applications in other tasks landmark estimation, which incur more annotation

cost and image generation are under-explored. In the rest of these chapters, we provide an

overview of existing methods for landmark estimation and image generation which are most

related to our work.

2.1 Landmark Estimation

Unsupervised Landmark prediction: The landmark prediction task has traditionally been

studied in a supervised learning setting. Given the annotation-heavy nature of the problem,

recent approaches have emphasized on unsupervised pretraining to learn information-rich fea-

tures. These approaches can be divided based on two principles: equivariance and image

generation.

Thewlis et al. [106] proposed an approach that uses equivariance of the feature descriptors

across image warps as an objective for supervision. Suwajanakorn et al. [101] extended this idea

for 3D landmark discovery from multi-view image pairs. This idea has also been used to model

symmetrically deformable objects [107], and to learn object frames [105]. Further, Thewlis et

al. [104] supplemented it using the principle of transitivity, which ensured that the descriptors

learnt are robust across images.

Generative objective for landmark detection was initially used by Zhang et al. [130] and

Lorenz et al. [71]. The main idea is to learn an image autoencoder with a landmark discovery

bottleneck. Jakab et al. [49] coupled it with conditional image generation which could decouple

the appearance and pose over an image pair. The key downside of these methods is that, the

discovered landmarks are not interpretable. This was addressed by [50] where the landmark

4



bottleneck is interpretable, due to availability of unpaired poses. [72] detects more semantically

meaningful landmarks using self-training and deep clustering.

Self-supervised learning: Self-supervised learning follows the paradigm of training a network

using a pretext task on a large-scale unlabeled dataset, followed by training a shallow network

using limited annotated data. Initial works explored pretext tasks like classification of image

orientation [31], patch-location prediction [80, 25], image colorization [127, 128], and clustering

[11, 8]. While transformation invariant representation learning of an image [134, 67, 99, 64] has

been extensively studied in supervised learning, the idea has outperformed prior pretext tasks

when modelled as a contrastive learning [38] problem [117, 44, 17, 19, 21, 16, 46, 122, 45, 9, 108]

in the self-supervised learning setting. Here, the main idea is to push the embeddings of the

query image and its augmentation (“positive” image) closer, while repelling it against the em-

beddings of the “negative” images (all other images). This is achieved using the InfoNCE [111]

loss. A key disadvantage of these methods is the use of a large number of “negative” images

which incurs high memory requirements. For eg., SimCLR [15] recommends using large batch

size, which naturally contains a many negatives against a single positive example. Another

prominent method, MoCo [44], uses a memory bank to store features across different batches.

The issue of large memory requirement was mitigated by methods like [34] and [18], which

achieve competitive performance without “negative” images. While both of these seminal works

concentrate on the classification task, there are some advances in adapting these techniques for

dense prediction tasks like detection and segmentation [89, 81, 120, 114] as well. The only

work that adopted the contrastive learning objective for the task of landmark prediction is

ContrastLandmarks (CL) [22], where they train the network with the InfoNCE [111] objective.

To adapt the output feature map to the resolution of the image, they use a hypercolumn

representation from features across different layers. The key differences between this work and

LEAD are: 1) We learn dense and compact descriptors via a novel correspondence matching

guided dimensionality reduction objective while CL uses the objective proposed by Thewlis

et al. [105], and 2) We do not use any “negative” images, as landmarks are ubiquitous in a

category-specific dataset.

2.2 Smoothening Latent Space of GAN

Generative Adversarial Networks. GAN proposed by Goodfellow et al . [33] a combination

of two neural networks, i.e. generator G and discriminator D. For image synthesis the goal

of D is to differentiate between real and generated images, whereas the G tries to fool the

discriminator into classifying generated images as real. In the recent years several improvements
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in architecture [58, 59, 85, 36, 76], optimization objectives [5, 7, 73, 74] and regularization [77,

35] have made GANs an ubiquitous choice for image synthesis. It has been observed that

GANs developed for large scale datasets, suffer mode collapse when trained on limited data.

Augmentation methods like DiffAugment [135], ADA [55], ContraD [51] , APA [52] etc. mitigate

the collapse by reducing the overfitting of discriminator on limited samples.

Hierarchical Representations. In classical vision, methods which decompose image into a

hierarchy have been exploited for the tasks of image stitching, manipulation and fusion [2, 23].

Building on this motivation Shocher et al . [94] develop an image translation and manipula-

tion method, which exploits hierarchical consistency of features of generator and a classifier.

However this method is restricted to single image translation and manipulation. In contrast

our work we aim to train a smooth and generalizable GAN which can simultaneously generate

diverse images, by using semantic hierarchical consistency of features.

Knowledge Transfer Using Pre-Trained Features. Using pre-trained features trained on

large scale datasets (e.g . ImageNet etc.) [41, 103] have been useful for various downstream tasks

across applications [26, 47, 110, 123]. The recent development of the self-supervised approaches

for representation learning [15, 85, 34] have further immensely improved the quality of features

learnt. These features are being used in various applications like part segmentation, localization

etc. without being explicitly trained on such tasks [12], which motivates our work which aims

to transfer these semantic properties to G’s feature space. Currently much work for transfer

learning for GANs has focused on the fine-tuning large GANs using a few images for adapting

it to a different domain [69, 78, 82, 79]. Recently a concurrent work [62] also aims to use

pre-trained features to improve GANs. However their goal is to improve discriminator. On

contrary we aim to enrich GAN feature space by imparting it with semantic properties, leading

to a disentangled and smooth latent space.

Image Editing Using Latent Space Interpolations. Latent space of pre-trained StyleGAN

models is highly structured [93] and is popularly used to perform realistic image edits in the

generated images [1, 93, 118, 48, 92, 125, 4]. The primary idea in most of these approaches is

to find a direction in the the extended latent space W+ for editing attributes and transforming

a latent code by moving in that direction to perform edits. StyleCLIP [84] learns the directions

for attribute editing by getting the guidance from pretrained CLIP [86]. On the contrary, our

work imposes constraints so that latent space has more naturally interpretable directions when

used by the GAN-based image editing methods.
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Chapter 3

LEAD: Self-Supervised Landmark

Estimation by Aligning Distributions

of Feature Similarity

3.1 Introduction

Most of the existing research in the field of self-supervised learning is focused towards the

task of instance-level classification. Amongst the proposed pretext tasks for self-supervision,

instance-discriminative methods [44, 17, 19, 21, 16], are known to be superior for the purpose of

pre-training. Recent methods utilize these objectives for dense prediction tasks as well, where

a distinct label is predicted either for every pixel (segmentation, landmark detection) or patch

of pixels (detection) [89, 81, 120, 114]. The power of contrastive training is leveraged for land-

mark detection by Cheng et al. [22] to achieve state-of-the-art performance using Momentum

Contrast (MoCo)-style [44] pre-training. This work demonstrates equivariant properties in the

network when trained with a contrastive objective. This property is realised by extracting a

hypercolumn-style feature map from the image. But using such a high-dimensional feature

map (3840d for ResNet50 due to stacking up of features), which is 60× larger than existing

approaches, to represent an image is not scalable to large images.

Our key insight is based on the observation that self-supervised training on category-specific

datasets (dataset that consists of images that belong to only single category) leads to meaningful

part-clustering in feature space. We further utilize this finding to propose a dense self-supervised

objective for landmark prediction. Specifically, LEAD involves two stages: (1) Global repre-

sentation learning, and (2) Correspondence-guided dense and compact representation learning.

The network from stage 1 leads to meaningful part clustering in the feature space, and hence
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Figure 3.1: LEAD Framework overview. Two stage process for self-supervised landmark
detection. First, an instance-level feature extractor is trained on a large Unannotated category-
specific Dataset with the BYOL [34] objective. Second, using the correspondence matching
property of the instance-level feature extractor, a pixel-level FPN [68] based feature extractor
is trained on the same dataset. Finally, the pixel-level feature extractor is used to train a
supervised regressor on limited data of landmark annotations.

can be used to draw correspondences between two images. This can be used for pixel/patch

level training to learn compact descriptors that represent the spatial information of the image.

We illustrate the high-level idea in Fig. 3.1, and include a detailed architecture in Fig. 3.2.

We measure the performance of LEAD using percentage of inter-ocular distance (IOD).

Landmarks estimated using our feature extractor show ∼10% improvement over prior art on

facial landmark estimation, along with a boost in performance in the setting of severely limited

annotations. We further obtain improved generalization to alignment and scale changes in the

input images.

In summary, our contributions are:

• We show the emergence of high-fidelity landmarks in Bootstrap-Your-Own-Latent (BYOL)

[34] style instance-level feature learning framework. (Sec. 3.2.2)

• We utilise this property to guide the learning of dense and compact feature maps of the

image via a novel dimensionality reduction objective. (Sec. 3.2.3)

• Our evaluations show significant improvements over prior art on challenging datasets and

across degrees of annotations, both qualitatively and quantitatively. (Sec. 4.3)
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Figure 3.2: LEAD training overview. Left: Stage 1 of the training feature extractor ΦG

with BYOL objective, where the representation of key augmentation is predicted from query
augmentation. Right: Stage 2 involves using frozen ΦG to obtain dense correspondences, which
are used to guide trainable network ΦD to obtain dense and compact image representation. The
correspondences, which also describe similarity between features, are converted to a probability
distribution over spatial grid, by using a softmax (ref. Fig. 3.3). Distribution of Feature
Similarity from ΦD is guided by that from ΦG using a cross-entropy loss.

3.2 Method

3.2.1 Background

Let X = {x ∈ RH×W×3} be a large-scale unannotated category-specific dataset. Our goal is to

learn a feature extractor Φ, which, given x ∈ X as input gives a feature map as output. As a

pretext task, prior works have attempted to enforce instance-level representations to be invariant

to transformations [22], and impose consistency on the dense pixel-level representations. In our

approach LEAD, we use two stages. First, we learn a global representation of the image that

leads to its part-wise clustering as described in Sec. 3.2.2. Then, we make use of this prior to

guide the learning of a dense and compact representation of the image by a novel dimensionality

reduction objective, which matches the distributions of feature similarity across two images, as

described in Sec. 3.2.3.

3.2.2 Global Representation Learning

We follow the algorithm proposed in BYOL [34] to learn an instance-level representation of the

image. BYOL uses an online network ΦG and a target network Φ̄G. ΦG and Φ̄G share the same

architecture, but the weights of Φ̄G are obtained using a momentum average of weights of ΦG

across multiple training iterations. These backbone networks are followed by projection heads

gGθ and ḡθ
G. Similar to the weights of the backbone, the weights of ḡθ

G are obtained using a
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momentum average. The necessity for the projection heads in self-supervised training has been

discussed extensively in SimCLR [16], where the authors find the representations of last layer

before the projection head to be most useful. Additionally, the online network has a prediction

head qGθ (Fig. 3.2).

The training objective is to predict the representation of one view of the image from another

using qGθ . Given an image x, its two views x1 and x2 are generated by applying augmentations.

We refer to x1 as the query image and x2 as the key image. ΦG and Φ̄G generate features

corresponding to x1 and x2 respectively. These feature maps are then projected using gGθ and

ḡθ
G respectively to obtain the instance-level representations z1 and z2. Since both the views

belong to the same instance, the predictor qGθ is trained to predict z2 given z1. The squared

L2 loss shown below is minimized for training:

LG = ∥qGθ (z1)− z2∥22 (3.1)

As shown in CL [22], the self-supervised contrastive objective produces hypercolumn based

feature maps that have semantic understanding of the correspondences at pixel level between

two images. In addition, we find that the BYOL objective gives significantly better corre-

spondences than the MoCo objective, as shown in the Fig. 3.3. Hypercolumns are used here,

since the self-supervised networks downsample the input image largely to obtain an instance-

level representation. Creating a hypercolumn based feature map involves concatenating the

intermediate feature maps along the channel dimension. Since the intermediate feature maps

have lower spatial resolution than the original input image, they are upsampled to match the

resolution of the input image. This has been illustrated in Fig. 3.3. However, hypercolumns

incur a large cost in terms of memory. In the next section, we improve upon this by injecting

pixel-level information into the network, thereby learning a dense and compact representation

of the image.

3.2.3 Dense and Compact Representation Learning

The bottleneck in framing the dense feature map learning problem is pixel-level correspon-

dences. In the case of global feature vector learning, the image to form the positive pair is

drawn by applying augmentation to the input image. But in the case of dense feature map

learning, the correspondences between points in the query and the key images are not known.

But since we have a trained BYOL network that can find reasonable (ref. Fig. 3.3) correspon-

dences across images, we use it to guide the learning of dense and compact feature maps of
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Figure 3.3: Correspondence matching performance using the hypercolumn representation.
Top Left: Procedure to create hypercolumn from intermediate feature maps, by upsampling
and concatenating them. Each feature vector across the spatial dimension denotes a hyper-
column. Top Right: Correspondence matching is performed from a point in the source
image to the target image by taking cosine similarity of the hypercolumn corresponding to the
source point and target’s hypercolumn feature map, followed by softmax to obtain a heat map.
Bottom: Examples of correspondence matching. Note that the resultant distribution peaks
around the tracked point.

images.

For the hypercolumn feature vector (or hypercolumn, for short), the ability to track a

semantic point across two image depends on the distance between them in the C̃-d feature

space. In this space, the features are clustered according to their semantic meaning. We aim

to learn a compact feature space which has this property.

We now elaborate on the training method followed to learn such a low-dimensional fea-

ture space (Fig. 3.2). We train an encoder-decoder network ΦD : RH×W×3 → RH
R
×W

R
×C . The

encoder is initialised with ΦG trained in Sec. 3.2.2. The output of the encoder goes to the

projection head gDθ . We aim to retain the relationship defined by the cosine similarity be-

tween the hypercolumn feature maps from two images in their compact feature maps which

are to be learnt. Let xi, xj ∈ X be two images, whose hypercolumn feature maps are Hi,
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Hj ∈ RH×W×3 → RH
R
×W

R
×C̃ respectively. Note that, C̃ ≫ C, which makes the hypercolumn

representation memory-intensive during inference. Let Fi = gDθ (Φ
D(xi)) be compact feature

maps of the respective images. Let fuv
i ∈ Fi be a feature vector at spatial location (u, v) in

feature map Fi. Similarly, let huv
i ∈ Hi be a feature vector at spatial location (u, v) in the

hypercolumn feature map Hi. Since the aim is to retain the inter-feature relationship, we use

cosine similarity as the measure of relationship between two feature vectors. To cover the whole

feature space, we take cosine similarity with all the feature vectors. This relationship between

the feature vector and the feature space as a probability distribution indicates which subspace

of the feature space the feature vector is most similar to:

quvij [k, l] =
exp(fuv

i
Tfkl

j /τ)∑H
R
,W
R

m,n=0 exp(f
uv
i

Tfmn
j /τ)

(3.2)

where τ is temperature, which is a hyperparameter controlling the concentration level of the

probability distribution quvij [117].

Similarly, such a relationship can be defined for huv
i with Hj as well. We denote this

probability distribution as puvij . This ultimately leads us to optimize quvij to mimic puvij . We use

cross-entropy between the both of them to achieve this objective:

LD =

H
R
,W
R∑

u,v=0

H
R
,W
R∑

k,l=0

−puvij [k, l] · log(quvij [k, l]) (3.3)

3.2.4 Landmark Detection

At this stage we have a feature extractor that is learned in a self-supervised fashion. To obtain

the final landmark prediction, a limited amount of annotated data is used. Feature extractor is

frozen and a lightweight predictor Ψ is trained over it. Ψ gives landmark heatmaps as output

(∈ RH×W×K) where K is the number of landmarks present). Expected location of the landmark

k, weighed by the heatmap gives its final position (x̂k, ŷk). It is supervised by the annotated

location of the landmark (xk, yk) with an l2 loss.

3.3 Experiments

Dataset: We evaluate LEAD on human faces. Following prior works, we use the CelebA [70]

dataset containing 162,770 images for pretraining the network. To evaluate the learnt represen-

tation, four datasets are used. We firstly use MAFL which is a subset of CelebA. Two variants

of AFLW [63] are used: the first being AFLWM which is the partition of AFLW with crops from
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Figure 3.4: Landmark Matching: We observe that LEAD is able to predict the landmarks
in the Query images (middle rows) using reference annotated image (first row). We compare our
performance against DVE [104] and ContrastLandmarks [22] on a spectrum of head rotations.

MTFL [131]. It contains 10,122 training images and 2,995 test images. The second variant is

AFLWR, in which tighter crops of the face are used. This comprises of 10,122 training images

and 2,991 testing images. We further use the 300-W [91] dataset which has 68 annotated

landmarks, with 3148 training and 689 testing images. All the datasets are publicly available.

Implementation Details: We use a ResNet50 [40] backbone to train instance-level

BYOL representation in stage 1. In stage 2, the feature extractor of the trained ResNet in

stage 1 is used as weight initialization for the encoder. The decoder is made up of FPN [68].

It is a lightweight network following the encoder which incorporates features from multiple

scales of the encoder to create the final dense feature representation. This idea is similar to

the creation of a hypercolumn feature map. FPN builds the final representation from features

at 1/4, 1/8, 1/16 and 1/32 scales, using upsampling blocks as proposed in [81]. The final

dense representation has a feature dimension of 64 and spatial downscaling of 1/4. The feature

projection head is composed of 2 linear layers with BatchNorm and ReLU.

We use BYOL for stage 1 training with a batch size of 256 for 200 epochs using the SGD

optimizer. The learning rate is set to 3 × 10−2 with a cosine decay for stage 1 training. For

stage 2, we train with a batch size of 256 for 20 epochs on the CelebA dataset. We set the

temperature τ to be 0.05. For a fair comparison we train the supervised regressors with frozen

feature extractor as proposed in [22]. The regressor initially comprises of 50 filters (to keep

evaluations consistent with [22, 104]) of dimension 1×1×K which transforms the input feature

maps to heatmaps of intermediate virtual keypoints. These heatmaps are converted to 2K x-
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Table 3.1: Landmark matching performance comparison against prior art on MAFL dataset.
The error is reported as a percentage of inter-ocular distance.

Method Feat. dim. Same Different

DVE [104] 64 0.92 2.38
CL [22] 64 0.92 2.62
BYOL + NMF 64 0.84 5.74
LEAD (ours) 64 0.51 2.60

CL [22] 256 0.71 2.06
BYOL + NMF 256 0.91 4.26
LEAD (ours) 256 0.48 2.50

CL [22] 3840 0.73 6.16
LEAD (ours) 3840 0.49 3.06

y pairs using a softargmax layer, which are further linearly regressed to estimate manually

annotated landmarks. Here K represents the number of annotated keypoints in the dataset.

Following DVE, we resize the input image to (136×136) and then take a (96×96) central crop

for performing the evaluations. For stage 1 training we take two (96× 96) sized random crops.

We perform all of our experiments on 2 Tesla V100 GPUs.

Evaluation: Following prior works, we use percentage of inter-ocular distance (IOD) as

the error. We evaluate on two tasks, landmark matching and landmark regression. We describe

each of the evaluation tasks next.

3.3.1 Landmark Matching

In the landmark matching task, we are given two images. One is a reference image for which

the landmarks are known and the other is a query image, for which the landmarks are to be

predicted. Prediction is done by choosing the feature descriptor of a landmark in the reference

image, and finding the location of the most similar feature descriptor to it in the feature map

of the query image using cosine similarity. In line with DVE [104], we evaluate on a dataset

consisting of 500 same identity and 500 different identity pairs taken from MAFL. Qualitative

results of matching are shown in Fig. 3.4, while quantitative results are presented in Table

3.1. Also shown in Table 3.1 is the Non-negative Matrix Factorization (NMF [65], which gives

low-rank approximation of non-negative matrix) baseline, wherein we apply NMF over the

learned hypercolumn thereby showing that our dimensionality reduction objective is superior to

naively applying NMF over the learned hypercolumn. Similar to the trends from correspondence

matching using hypercolumn in Fig. 3.3, the final dense model with 64 dimensional features is

14



Table 3.2: Landmark regression performance comparison against prior art. The error is
reported as a percentage of inter-ocular distance. We achieve state-of-the-art result on the
challenging AFLW datasets with ∼10% relative gain, while obtaining competitive results on
MAFL and 300W.

Method Unsupervised MAFL AFLWM AFLWR 300W

TCDCN [132] ✘ 7.95 7.65 - 5.54
RAR [119] ✘ - 7.23 - 4.94
MTCNN [131, 130] ✘ 5.39 6.90 - -
Wing Loss [29] ✘ - - - 4.04

Dense objective based
Sparse [106] ✓ 6.67 10.53 - 7.97
Structural Repr. [130] ✓ 3.15 - 6.58 -
FAb-Net [116] ✓ 3.44 - - 5.71
Def. AE [95] ✓ 5.45 - - -
Cond. Im. Gen [49] ✓ 2.86 - 6.31 -
Int. KP. [50] ✓ - - - 5.12
Dense3D [105] ✓ 4.02 10.99 10.14 8.23
DVE SmallNet [104] ✓ 3.42 8.60 7.79 5.75
DVE Hourglass [104] ✓ 2.86 7.53 6.54 4.65

Global Objective based
ContrastLandmarks [22] ✓ 2.44 6.99 6.27 5.22
LEAD (ours) ✓ 2.39 6.23 5.65 4.66

able to meaningfully match the landmarks from reference image to query image. This is verified

across a head rotation ranging from left-facing to frontal faces and right-facing images. The

matching is consistent across genders, showing no bias for any gender.

3.3.2 Landmark Regression

In the task of landmark regression, a lightweight regressor is trained on top of the features

extracted by the pretrained network. This is done using supervised learning on the evaluation

dataset. We report the inter-ocular distance on landmark regression in Table 3.2. Our model

trained using the BYOL objective achieves results which are ∼10% better than the prior-art on

a relative scale, on 2 out of 4 evaluation datasets, while maintaining a competitive performance

on the 300-W dataset. Regression performance is qualitatively verified in the Fig. 3.7.
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Figure 3.5: t-SNE plots of output feature maps. Left: LEAD stage 1 features Right:
CL stage 1 features

3.3.3 Interpretability

We perform t-SNE clustering on MAFL test split, which contains 1000 images. We observe that

the t-SNE embeddings obtained from our model trained with BYOL objective are interpretable.

It divides the face spatially into 9 parts, where each clusters corresponds to one of the 9 parts.

t-SNE clustering is visualized in Fig. 3.5 and interpretability of the clusters is verified in Fig. 3.6.

We also compare our t-SNE plots against that of CL [22], wherein we see that CL embeddings

are not well clustered when compared to LEAD which shows distinct clusters.

3.3.4 Ablation Studies

We ablate LEAD on factors like feature dimension, contribution from each stage, projection

head, degree of annotation availability, and sensitivity to scale variations.

Feature Dimensions. Feature dimension plays a significant role in the landmark regression

task. Since the regressor takes features as input, its capacity depends on the dimensions of the

feature, i.e. a higher dimensional feature implies that the regressor has more capacity to learn,

resulting in better predictions. Our experiments in Table 3.4 indicate a superior performance

on the challenging AFLWM dataset, while achieving competitive performance on MAFL and

AFLWR. Surprisingly, we find a large deviation in performance trends on the 300W dataset

compared to the results obtained using hypercolumn feature maps (ref. Tab. 3.2) as guidance

for the compact feature maps.

How much does stage 2 objective contribute? To answer this question, we run exper-

iments on 2 different pretraining (stage 1) objectives, followed by 2 different dimensionality

reduction (stage 2) objectives. To compare directly, we take CL’s [22] pretraining and dimen-

sionality reduction objectives and our objectives for the same. We keep the architectures same
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Table 3.3: Effect of projection head on landmark matching. Projection head affects the
matching on different identity. On increasing the dimension of the projection head’s output,
improvement is observed. Further gains are observed on increasing the final representation’s
(ΦD’s output) dimension.

Feat. dim. Proj. dim. Same Different

64 ✘ 0.48 2.79
64 64 0.51 2.64
64 256 0.51 2.60

128 256 0.47 2.58

256 256 0.48 2.50

Table 3.4: Effect of feature dimension on landmark regression task

Method Feat. dim. MAFL AFLWM AFLWR 300W

DVE [104] 64 2.86 7.53 6.54 4.65
CL [22] 64 2.77 7.21 6.22 5.19
LEAD (ours) 64 2.93 6.61 6.32 5.32

CL [22] 128 2.71 7.14 6.14 5.09
LEAD (ours) 128 2.91 6.60 6.21 5.41

CL [22] 256 2.64 7.17 6.14 4.99
LEAD (ours) 256 2.87 6.51 6.12 5.37

Table 3.5: Number of annotations: LEAD consistently produces the lowest inter-ocular
distance under the presence of different levels of annotations on the AFLWM dataset. The
relative improvement is as high as 45% over previous best (in case of ‘5 annotations’ training
setting)

Method Feat. dim.
Number of annotations

1 5 10 20 50 100

DVE [104] 64 14.23 ± 1.45 12.04 ± 2.03 12.25 ± 2.42 11.46 ± 0.83 12.76 ± 0.53 11.88 ± 0.16
CL [22] 64 24.87 ± 2.67 15.15 ± 0.53 13.62 ± 1.08 11.77 ± 0.68 11.57 ± 0.03 10.06 ± 0.45
LEAD (Ours) 64 21.8 ± 2.54 13.34 ± 0.43 11.50 ± 0.34 10.13 ± 0.45 9.29 ± 0.45 9.11 ± 0.25

CL [22] 128 27.31 ± 1.39 18.66 ± 4.59 13.39 ± 0.30 11.77 ± 0.85 10.25 ± 0.22 9.46 ± 0.05
LEAD (ours) 128 21.20 ± 1.67 13.22 ± 1.43 10.83 ± 0.65 9.69 ± 0.41 8.89 ± 0.2 8.83 ± 0.33

CL [22] 256 28.00 ± 1.39 15.85 ± 0.86 12.98 ± 0.16 11.18 ± 0.19 9.56 ± 0.44 9.30 ± 0.20
LEAD (ours) 256 21.39 ± 0.74 12.38 ± 1.28 11.01 ± 0.48 10.06 ± 0.59 8.51 ± 0.09 8.56 ± 0.21

CL [22] 3840 42.69 ± 5.10 25.74 ± 2.33 17.61 ± 0.75 13.35 ± 0.33 10.67 ± 0.35 9.24 ± 0.35
LEAD (ours) 3840 24.41 ± 1.38 14.11 ± 1.30 11.45 ± 0.88 10.21 ± 0.44 8.43 ± 0.25 8.09 ± 0.28
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Figure 3.6: t-SNE embeddings tend to cluster part-wise. The 9 parts (along row) shown
for each reference figure (along column) here belong to the 9 clusters in Fig. 3.5. Each cluster
denotes a semantic part of the face.

as LEAD and only vary the objective function for a fair comparison. We report our findings

in Table 3.6. Irrespective of the stage 1 training, LEAD’s dimensionality reduction procedure

improves the IOD.

Is the projection head necessary in stage 2? Necessity of the projection head in self-

supervised learning has been empirically shown to lead to meaningful representations [16]. We

use it in our stage 1 training. However in stage 2, where we aim to get higher resolution feature

maps as output, is the projection head still required? We use a projection head gDθ on the final

feature map as given by ΦD to apply the loss during training. Eventually the gDθ is discarded

Table 3.6: Dimensionality reduction objective. LEAD’s proposed dimensionality reduc-
tion objective significantly improves the performance irrespective of the global representation
learning objective. Results are reported on AFLWM dataset.

Global Rep. Obj. Dim. Red. Obj. Feat. dim.
(Stage 1) (Stage 2) 64 128 256

CL CL 7.86 7.81 7.31
CL LEAD 6.66 6.58 6.69

LEAD CL 7.89 7.86 7.41
LEAD LEAD 6.61 6.60 6.51
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Figure 3.7: Landmark regression: We observe that features generated by pretraining using
LEAD can easily be used to train a lightweight regressor to predict landmarks with high preci-
sion. Furthermore, the model is robust to aspects such as face orientation, lighting and minor
occlusions.

and only ΦD is utilised. Here, we ablate on the performance shown by ΦD in the absence of

projection head as well as the on the output dimension of the gDθ . Since we discard gDθ , we are

allowed to keep its output’s dimension as high as required. In our ablation (ref. Table 3.3),

it is observed that for landmark matching on the same identity, there are marginal changes

upon having gDθ as well as varying its output dimension. But the projection head emerges as

a distinguishing component in case of matching on different identity. Consistent improvements

are observed on increasing the feature dimension of the projection head. It can be seen that

this leads to slight degradation of performance on the same identity. We also observe the effect

of increasing the feature dimension by keeping the projection dimension fixed where we note a

further improvement on matching.

How sensitive is it to the alignment and scale variations? At inference stage, the

landmark regressor can encounter images which may have different alignments or scales when

compared to the data it was trained on. To check the sensitivity of LEAD to these changes we

use features from CelebA trained LEAD to train a landmark regressor on an unaligned-MAFL

dataset. We create this dataset by taking images from MAFL subset of CelebA-in-the-wild [70]

dataset cropped by the bounding box annotations. Furthermore, before taking a crop, we also

randomly scale up the side length of the bounding box a factor uniformly randomly sampled

between 1-1.5×. This results in zooming out of the image (ref. Fig. 3.11). We refer to this factor

as “Zoom-out factor” We evaluate the regressor on the test split which is created by scaling up

the side length of the bounding box by a zoom-out factor of 1-2× before cropping. We use 64d

feature for this experiment. In Fig. 3.9, we observe that across the range of evaluated scales,

LEAD outperforms CL [22]∗. The gap between the two methods widens for larger zoom-out

∗Same training and evaluation protocol was followed for both.
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Number of Annotations

Figure 3.8: Number of annotations. Landmark prediction under different number of anno-
tated images used for supervised training (mentioned below every column) on AFLWM .

factors, which are unseen during training. We visualize the landmark regression against scale

changes in Fig. 3.11.

Table 3.7: Comparison of supervised
training speeds at differ feature dimen-
sions. Note that hypercolumn features
(3840 feat. dim.) are 55× slower.

Feat. Dim. FLOPS

3840 2.21

256 0.16

128 0.08

64 0.04

How many annotated images are required for

supervised training during evaluation? Since

the evaluation of our method depends on the anno-

tated samples, we run an ablation on the number

of annotations required. We report the quantita-

tive results in the Table 3.5, along with qualitative

annotation-wise comparisons in Fig. 3.8. We test by

varying the number of annotations to 1, 5, 10, 20,

50, and 100. We observe a consistent and significant

gain in the performance with increasing number of

annotations over the competent methods, a trend

which even continues at different dimensions of features.

Complexity Analysis. The computational complexity during pretraining stages (Stage 1 and

Stage 2) is O((HW
R2 )

2×C), similar to the prior art [104, 22]. Additionally, we have also reported

the computational cost incurred by our method at the evaluation stage (training on a small

annotated dataset) at different levels of feature dimensions in the Table 3.7, where we find

20



1 - 1.1x 1.1 - 1.2x 1.2 - 1.3x 1.3 - 1.4x 1.4 - 1.5x 1.5 - 1.6x 1.6 - 1.7x 1.7 - 1.8x 1.8 - 1.9x 1.9 - 2x
Zoom-Out Factor

0

2

4

6

8

10

12

14

16

Av
er

ag
e 

In
te

r O
cu

la
r E

rro
r

Average error across all zoom-out factors from 1x to 1.5x (LEAD)
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Figure 3.9: Sensitivity to scale variations: Sensitivity to seen scales (Zoom-out factor ∈ 1-
1.5x) vs unseen scales (Zoom-out factor ∈ 1.5-2x) on unaligned-MAFL. LEAD performs better
across scale changes, and is also less sensitive to unseen scales of face.

that training stage 2 at 64d is 55× faster compared to the hypercolumn which is 3840d.

3.4 Chapter Summary

In this work, we demonstrate the superiority of the LEAD framework to learn representation at

instance level from a category specific dataset. We further utilize this prior to train a dense and

compact representation of the image, guided by the correspondence matching property of the

learnt representation. Our experiments demonstrate the superiority of the BYOL objective over

contrastive tasks like MoCo on category specific data for landmark detection. Our proposed

dimensionality reduction method improves the results on both feature extractors. A future

research direction could be the usage of this correspondence matching property to learn a

variety of dense prediction tasks.
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Figure 3.10: Scale variation. LEAD Landmark regression visualization across differently
scaled (seen and unseen) images of unaligned-MAFL.
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Figure 3.11: Low lighting conditions. LEAD Landmark regression performs well despite
having low lighting conditions.
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Chapter 4

Hierarchical Semantic Regularization

of Latent Spaces in StyleGANs

4.1 Introduction

Having shown how pretrained features from self-supervised learning can benefit discriminative

task of landmark estimation, we now investigate how can they be leveraged to improve the

realism in the image synthesis models. Recent years have seen tremendous advances in Gen-

erative Adversarial Network (GAN) [33] architectures and their training methods to produce

highly photorealistic images [10, 57]. Progress in the StyleGAN family of GAN architectures

has shown promise by improving both the image quality, as well as the quality of latent space

representations which enables controlled image generation. This is achieved by transforming an

input noise space Z to a latent style space W which modulates a synthesis network at various

levels of representation hierarchies to generate an image with that style. This enables genera-

tion of compelling synthetic images with novel styles as well as practically useful applications

such as GAN-based image attribute editing, style mixing, etc. [93, 92, 48, 83, 84, 3]. Nonethe-

less, such networks still often produce unrealistic images (ref. Fig. 4.1). Note for examples, the

(residual glass) artifact in the red circular inset produced by StyleGAN2-ADA (kindly zoom

for details).

These quality issues in StyleGANs can have the following sources: (a) the hierarchical rep-

resentation spaces in the synthesis network, (b) the latent style space, in particular the linearity

and smoothness of such spaces, and (c) the functions used to transform the representation spaces

in (a) using the corresponding hierarchical style vectors in (b). Our work seeks to address some

of these issues.

We take inspiration from the recent advances in self-supervised and supervised learning [42,
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Figure 4.1: Hierarchical Semantic Regularizer (HSR) improves the latent space to semantic
image mapping to produce more natural-looking images. Top: We show latent interpolation
for images from bottom 10%-ile image pairs ranked by PPL, a metric to measure smoothness of
latent space. Bottom: Latent space using HSR mitigates artefacts in images during attribute
edit transition (as seen in binary attributed like “Eyeglasses”) and can transition smoothly
(young to old (SG2-ADA) vs. young to middle-age to old (SG2-ADA+HSR), in continuous
attributes like “Age”). Zoom in to observe the effects.

12, 20, 98] which have allowed for the learning of powerful image representations translating

into significant performance improves on image classification and other vision tasks [61, 98, 30].

Training on large datasets of natural images, like ImageNet [24], allows these techniques to learn

hierarchically organized feature spaces capturing richer statistical patterns in natural images:
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shallower layer capturing low-level image features and the deeper layers abstract features highly

correlated with visual semantics. Such pre-trained representations can be harnessed to enhance

the representational power of StyleGANs.

In fact, we demonstrate that transferring powerful pretrained representations mentioned

above allow us to mitigate simultaneously the challenges associated with both the representa-

tion spaces in the synthesis network as well as the latent style spaces modulating these represen-

tations. To allow for such a transfer, we propose to use a regularization mechanism, called the

Hierarchical Semantic Regularizer (HSR) which aligns the generator’s features to those from

an appropriate, state of the art, pretrained feature extractor at several corresponding scales

(levels) of the generator network. The architecture is shown in Fig. 4.3.

Karras et al . [54] introduced the Perceptual Path Length (PPL) metric to measure the

smoothness of mapping from a latent space to the output image and showed its correlation

with the generated image quality. We demonstrate that HSR regularization in StyleGAN

training leads to ∼ 15% relative improvement in PPL over StyleGAN2, leading to more realistic

interpolations. Please refer to the circular insets in Fig. 4.1.

A power approach for controlled synthesis of novel images is via linear (convex) interpolation

between attributes∗ corresponding to real images. Applications such as image editing utilize

such capabilities under the presumption that style spaces are both linear as well as decorre-

lated allowing for desired controlled edits. Since, PPL does not measure linearity, we propose

a novel metric, Attribute Linearity Score (ALS), to measure linearity in the attibute space.

We demonstrate that HSR simultaneously improves linearity leading to smoother edits with

significantly reduced editing artifacts (Fig. 4.1). A mean relative improvement of 15.5% over

StyleGAN2-ADA is achieved on the ALS metric.

Our contributions are:

• A novel Hierarchical Semantic Regularizer (HSR) improving the generation of natural-

looking synthetic images from StyleGANs. HSR is presented in (Sec. 4.2 with an analysis

of design choices 4.2.3).

• Extensive bench-marking of improvements by HSR regularization on popular datasets,

especially when utilizing linear interpolations for attribute editing (Sec. 4.3).

• Since linearity of the latent attribute space is very important for performing controlled

edits, we propose a new metric, Attribute Linearity Score (ALS), in (Sec. 4.3.3) and

demonstrate improved linearity over the baselines.

∗We use style and attributes interchangeably.
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4.2 Approach

In this section, we first describe the objective of GAN framework, properties of StyleGAN,

and its evaluation in Sec. 4.2.1. Then, we describe Hierarchical Semantic Regularizer (HSR)

(Sec. 4.2.2) and discuss its design in Sec. 4.2.3.

4.2.1 Preliminaries

Generative Adversarial Networks. GAN involves two competing networks, namely a Gen-

erator G and a Discriminator D. Taking a noise z sampled from a distribution Pz as input, G

generates an image G(z) ∈ R3×H×W . Whereas, D takes an input image x ∈ R3×H×W , and tries

to classify it as real or generated. The objective of G is to fool D into making it classify the

generated image as a real one. Formally, the learning objective can be written as:

max
D

LD = E
x∼Pr

[log(D(x))] + E
z∼Pz

[log(1−D(G(z)))]

min
G

LG = E
z∼Pz

[log(1−D(G(z)))]
(4.1)
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Figure 4.2: Distribution of PPL over 50k images
from SG2-ADA and SG2-ADA+HSR. HSR im-
proves the perceptual quality of top and bottom
10%-ile images, thus leading to more natural-
looking images.

StyleGAN. In StyleGAN, an architectural

modification is introduced where z is trans-

formed into a semantic latent space through

a sequence of linear layers called Mapping

Network Gm, before generating the image

I through a Synthesis Network Gs as I =

Gs(w). Hence, G = Gs ◦ Gm. The space

learnt by Gm is known as W+-space. It is ob-

served that W+ is more meaningful in terms

of attributes learned from the training data

as compared to noise space Z. Several meth-

ods [93, 48, 92] propose ways to find attribute-

specific directions in W+ latent space.

Perceptual Path Length. To measure the

smoothness of the mapping from a latent

space to the output image, Karras et al . [57]

proposed Perceptual Path Length (PPL). The requirement for this metric arises due to gen-

eration of unnatural images by GAN despite having low FID [57]. PPL aims to quantify the

smoothness of latent space to output space mapping by measuring average of LPIPS [129] dis-
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Figure 4.3: Hierarchical Semantic Regularizer: We use a pre-trained network to extract
features at various resolution hierarchically. We then train linear predictors over generator
features to predict the pre-trained features hierarchically. This transfers the semantic knowledge
to generator feature space, making it’s latent space meaningful, disentangled and editable.

tances between two generated images under small perturbations in the latent space. A smoother

latent space should have lesser PPL when compared to an uneven latent space. It is shown [56]

that PPL correlates well with image quality, i.e. good quality images pairs will have less PPL,

while if any one of the image is of bad quality, the PPL would be high. The images are sampled

randomly without any truncation trick [60, 10] to compute PPL. As observed in Fig. 4.5, the

bottom 10%-ile by PPL (sorted in increasing order) among the generated images appear as

out-of-distribution images. Hence, the mean PPL score can be used to quantify the extent of

non-smooth regions of latent space which produce unnatural images. Hence, we will be using

this metric as a primary metric for comparison of the smoothness of latent space learnt by the

models.

4.2.2 Hierarchical Semantic Regularizer

Feature extractors of networks pretrained on large datasets (e.g . ImageNet etc.) of natural

images using classification or self-supervised losses store strong priors about the data, that are

organized hierarchically. Each level of hierarchy captures a different semantic feature of data.

The statistics of wide variety of natural images are captured by these networks [41, 6, 109]. Due

to the inherent differences in the nature of tasks, discriminative models capture different kinds

of features compared to generative ones. Therefore, we seek to enrich the G’s intermediate

feature space with guidance from a pretrained feature extractor.
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We first give a general idea of the proposed regularizer and then dive into various design

choices made in it’s formulation. Given an image x as input, the feature extractor F returns

semantically meaningful features from it. We attempt to make the generator aware of this

explicit semantic feature space. To this end, we freeze the feature extractor and treat it as a

fixed function that maps from image space to a semantically meaningful feature space.

Given such a mapping of the generated image, we try to align the Generator’s features of

this image through a set of feature predictors. This alignment is inspired by BYOL [34]. As

illustrated in Fig. 4.3, we attach a predictor branch q to the Generator G. The objective of q

is to learn a mapping from generator’s intermediate feature map Gπi
G(z) to pretrained feature

extractor’s intermediate feature F πi
F (G(z)), where πG in πF denote the ordered set of layer

numbers in the G and F at which we attach the predictors (ref. Eq. 4.2). We attach multiple

such predictor networks qi at different scales of generator.

LG = E
z∼Pz

[log(1−D(G(z)))] +

|πi
G|∑

i=0

E
z∼Pz

∥q(Gπi
G(z))− F πi

F (G(z))∥22 (4.2)

4.2.3 Design Choices

We analyse the effect of our Hierarchical Semantic Regularizer (HSR) against different design

choices. For this purpose, we choose AnimalFace-Dog dataset which consists of 389 images.

Since this is a low-shot dataset, we use StyleGAN2-ADA as our baseline. We perform all our

experiments on 256× 256 resolution.

What should be the choice of feature extractor? For this analysis, we choose 5 different

feature extractors. We take combinations of CNN or transformer based networks trained us-

ing either self-supervised or supervised classification objective. We take ResNet-50 as the CNN

backbone for both self-supervised (DINO) and supervised networks. For transformer-based net-

works, we use ViT-DINO and DeiT. Apart from trained networks, we also consider a randomly

initialized ViT for baseline comparison.

We find that all pretrained feature extractors when used through HSR loss lead to introduc-

tion of meaningful semantic features in the intermediate latent spaces of the Generator. This is

evidenced by reduction of PPL Score in Table 4.1, which signifies reduction in non-meaningful

generations from the GAN. The reduction in PPL also implies improved disentanglement [57]

and linearity in the W space of the Generator, which is a desired property for many applica-

tions. We get ≥ 6.2% improvement in the PPL score when guided by these networks. ViT
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Table 4.1: Feature space ablation: Ab-
lating over different feature extractors for
usage in HSR. Regularizing using ViT
DINO’s features gives best results.

FID ↓ PPL↓

StyleGAN2-ADA 53.28 59.27
+ ViT (RandInit) 53.65 56.97
+ ResNet50 DINO [12] 54.33 55.6
+ DeiT [109] 53.22 54.71
+ ResNet50 [42] 52.88 52.23
+ ViT DINO [12] 51.58 48.02

Table 4.2: Level of semantics: A gradation in the
improvement over the baseline is observed as we su-
pervise from high-level semantics to low-level seman-
tics. Best results are obtained when all the levels are
supervised.

FID↓ PPL↓

StyleGAN2-ADA 53.28 59.27
+ High-level ( r

32
, r

16
) 53.15 57.73

+ Mid-level ( r
16
, r

8
) 52.91 54.18

+ Low-level ( r
8
, r

4
) 53.66 51.77

+ All levels 51.58 48.02

DINO’s features stand apart, by improving the PPL score by 19% over the baseline. This is

also supported by recent findings of Amir et al . [6], where they show several inherent properties

of features from ViT-DINO, that are useful for computer vision tasks. With these results, we

fix ViT DINO as the choice of the feature extractor for the rest of the experiments.

Which layers of Generator are more important? The StyleGAN generator G generates

images using 7 synthesis blocks: starting from 4×4, up to full resolution of 256×256. Of these,

we consider synthesis blocks having features of resolution 8, 16, 32, 64. This corresponds to

scaling down of resolution r to r
32
, r
16
, r
8
, and r

4
. We choose these scales as it largely corresponds

to the scales of downsampling by each block in SoTA CNN architectures [42, 98]. The first block

of G (which have low resolution, but are responsible for high-level semantics) are supervised by

the last block of the feature extractor (as they also are responsible for high-level semantics).

Similarly, the next three blocks of G are supervised by the respective blocks of the feature

extractor that bring out similar level of semantics.

To decide which layers contribute the most to the improvement in PPL, we divide the 4

blocks into 3 groups. The 3 groups specialize in high ( r
32
, r

16
), mid ( r

16
, r

8
), and low ( r

8
, r

4
) level

of semantics. We observe, in Table 4.2, that it is the supervision at low-level semantics which

is most useful for the G. We observe a gradation in the improvement over the baseline, as high-

level semantic supervision is least useful, followed by middle, and low. Overall, supervision at

all levels turns out to cause the highest improvement.

Does Path Length Regularizer (PLR) complement HSR? Path Length Regularizer

(PLR) was introduced in StyleGAN2 [57]. The intuition behind PLR is to promote fixed

magnitude non-zero change in the resulting image when moving by a fixed step size in the W+-

space. As reported in Table 4.4, we find that HSR itself gives slightly better improvement than
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Table 4.3: Full data Results: We report FID, Precision,
Recall and PPL for different methods. With full data our
method (SG2+HSR) produces better results across all the
evaluation metrics.

FFHQ-140k FID↓ Precision↑ Recall↑ PPL↓
SG2 3.92 0.68 0.45 175.09
+ HSR 3.72 0.68 0.48 144.59

LSUN-Church
SG2 4.08 0.60 0.34 916.15
+ HSR 3.82 0.60 0.41 678.55

Table 4.4: Performance wrt PLR.
PLR and HSR complement each
other, while being equally effective in-
dividually.

PLR HSR FID↓ PPL↓

✘ ✘ 57.97 75.63
✓ ✘ 53.28 59.27
✘ ✓ 52.98 58.60
✓ ✓ 51.58 48.02

the PLR over the baseline. While the best effect is noted when both, PLR and HSR, are applied

together. Insight. PLR’s objective is to improve latent space smoothness, which leads to

better PPL. Since PPL and image quality (natural-ness of image) are correlated, applying PLR

improves the image quality. Whereas in HSR, we enforce the generator to predict in a feature

space learnt from natural images using a pretrained feature extractor as prior. We observe that

this objective, which targets bringing feature space of generator closer to a “natural” feature

space also leads to improvement in the smoothness of latent space, as measured by PPL. This

shows that image quality and latent space smoothness are complementary and related concepts.

Therefore, optimizing for both gives better PPL score.

4.3 Experiments

In this section, we demonstrate the effectiveness of HSR experimentally. We first describe the

experimental setup for all our experiments. Then, we evaluate the quantitative performance on

several real-world datasets of varying sizes. Finally, we show improved linearity of latent space

through attribute editing.

4.3.1 Experimental Setup

Datasets. We run our experiments on FFHQ [54] (70k images), LSUN-Church [124] (1.2M

images), AnimalFace-Dog (389 images), AnimalFace-Cat [96] (160 images), and CUB200 [113]

(12k images) datasets. We augment the datasets by taking the horizontal flip of every image,

doubling the number of images in the original dataset. We resize the data to spatial dimensions

of 256× 256.

Implementation Details. We use StyleGAN2-ADA (SG2-ADA) as the baseline GAN, with

its architecture for 256×256 images, with batch size of 16. Predictors q contain Conv1x1-LeakyReLU-
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Conv1x1, with hidden dimension of 4096. We make use of 2 A6000 GPUs for training.

In order to leverage the rich feature space of pretrained networks using the generated images,

we turn on the HSR regularizer after training the GAN for 500kimgs. By this point in the

training, the GAN learns to generate images that start to look like the real images. We use the

feature extractor of ViT-DINO [12] to extract features. We resize the image to 224×224 before

feeding into ViT-DINO. We use the intermediate output (after disarding CLS token) of its 3,

6, 9, and 12th transformer blocks, to supervise the generator’s output at the 64, 32, 16, and

8 resolution respectively to align the semantics at various hierarchical levels, since ViT-DINO

has been to shown to have a high-to-low level semantics emerging in its stack of transformer

blocks [6]. We resize the generator’s intermediate outputs to 14×14 before applying the loss

function (l2).

4.3.2 Results

On standard full datasets of FFHQ and LSUN-Church, we compare over StyleGAN2 [57]. We

also evaluate our method for limited data sizes. Traditionally, GANs have shown to perform

poorly on smaller datasets, until recently several approaches [55, 52, 121] have been proposed

which enables GANs to learn well on limited data. We observe that irrespective of dataset size,

asking the generator to be predictive of semantic features of rich feature extractors via HSR

improves the smoothness of the latent space, as it is evident by an average relative improvement

in PPL scores of about 14.2% on average in Table 4.5, while that of 17.4% in case of full FFHQ

and 25.93% in LSUN-Church(ref. Table 4.3). This is also evident qualitatively in Fig. 4.4 and

4.5, where we observe an improved latent-to-image mapping even in bottom 10%-ile images,

when ranked by PPL scores. Thus, HSR raises the lower bound for the natural-ness of the

images produced by a generator (also ref. Fig. 4.2).

Improvement in Worst Images. We have quantitatively shown that applying the HSR

regularization improves the quality of worst images that the generator can produce. We also

demonstrate this qualitatively in 2 ways. First, we compare the Mahalanobis distance between

the generated images and the moments of the real data from a set of 5000 generated images.

We present the results of 30 farthest images in Fig. 4.6. It can be seen that unnatural, non-face

images are being generated by the baseline, which are virtually absent when HSR is applied. In

the case of the LSUN-Church dataset, the images lack in structural aspects related to churches

and shows presence of unnatural colors in the image. While after applying HSR, the images

reproduce the structure faithfully, for e.g., in the edifices.

Secondly, we present the results of images sampled from the bottom 10% according to the

PPL score. We present these results in Fig. 4.7. A similar trend is observed with the presence
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Table 4.5: Results on Limited Data We present results on different limited data cases for
FFHQ (left) dataset and on real-world datasets (right). We apply our regularizer on the strong
baseline of StyleGAN2+ADA which is designed for limited data. We observe a significant
decrease in PPL over baselines which implies a smooth, disentangled and meaningful latent
space, while preserving photorealism (comparable FID).

Dataset Method FID↓ PPL↓

FFHQ-1k
StyleGAN2-ADA 19.14 98.79
+ HSR 21.76 90.39

FFHQ-2k
StyleGAN2-ADA 14.74 136.14
+ HSR 15.53 115.38

FFHQ-10k
StyleGAN2-ADA 7.16 164.21
+ HSR 8.08 126.35

Dataset Method FID↓ PPL↓

AnimalFace StyleGAN2-ADA 53.28 59.27
Dog + HSR 51.58 48.02

AnimalFace StyleGAN2-ADA 39.50 50.76
Cat + HSR 40.25 40.75

CUB
StyleGAN2-ADA 5.78 265.46
+ HSR 6.15 237.81

of artefacts in and around the facial regions. In both cases (faces and churches), the artefacts

are greatly reduced after the application of the HSR regularizer, making the images look more

natural.

4.3.3 Analysis of Linearity of Latent Space

Motivation. Latent space of a pre-trained StyleGAN has meaningful directions embedded in

it. Shen et al . [93] shows that W+ latent space is disentangled with respect to image semantics

and there exist linear directions d in this space that control specific semantic attributes in the

generated images. This is an important property of the latent space which is commonly used

in controlled image synthesis [84] and image editing [1], as it leads to smooth interpolation

between any two generated images. Furthermore, it is observed that the magnitude of latent

transformations linearly correlates with the magnitude of the attribute changes in generated

images [136]. Although, multiple works [1, 48, 93, 118, 84] are built upon this property to

generate desired image transformations, there is no established metric to evaluate the extent

of this linear correlation in the latent space. To this end, we propose a new metric called

Attribute Linearity Score (ALS) for quantifying this linear correlation between the extent of

latent transformations and the attribute changes.

Attribute Linearity Score (ALS). Let the attribute strength be given by attribute score

(logit value) from a pretrained attribute classifier C [54]. Consider two latent codes w0 and

w1 ∈ W+ and their corresponding generated images G(w0) and G(w1) (using the generator

G). Convex combinations of w0 and w1 generate interpolated latent codes wt (Eq. 4.3) on the

line segment joining the two latent codes w0 and w1. Let the corresponding generated images
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SG2-ADA

SG2-ADA + HSR

Figure 4.4: Latent space interpolation of top 10-%ile images, ranked by PPL score. SG2-ADA
images show traces of artifacts which are absent after applying HSR.

be denoted by G(wt). Linearity of the latent space with respect to the attribute strength C

implies that the attribute score for the image G(wt) should be the same convex combination

of the attribute strengths of G(w0) and G(w1) (Eq. 4.4). This expectation of linearity is

supported by a (statistical) significant analysis in [136].

wt = w0 + t ∗ (w1 −w0), t ∈ (0, 1) (4.3)

C(G(wt)) ≈ C(G(w0)) + t ∗ (C(G(w1))− C(G(w0))), t ∈ (0, 1) (4.4)

Consider the example shown in Fig. 4.9a, where we depict the transformation of the smile

attribute. On the left, we show the plot of attribute scores with the interpolation parameter t

using smile classifier Cs and on the right we show the image samples G(wt) for t ∈ (0, 1). A

model with a linear latent space structure should have this plot close to the “ideal” (shown in

dotted) straight line between the two end points. Similar plots are shown for the “smile” and
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SG2-ADA

SG2-ADA + HSR

Figure 4.5: Latent space interpolation of bottom 10-%ile images, ranked by PPL score. SG2-
ADA latent space accommodates more unnatural images, while leads to increase in PPL score.
Upon adding HSR, the latent space maps to more natural face-like images.

“male” attributes in 4.9b. In both cases, we observe a significant departure from linearity.

The ALS score quantifies the deviation from the line segment defined in Eq. 4.4 using the

mean squared error metric. To compute this, we first define a set of equally-spaced interpolation

points t ∈ {0, 1
N
, 2
N
, . . . , 1}. For each attribute j ∈ {1, . . . ,M}), the squared difference (∆tj)

is computed using Eq. 4.5. The ALS score (∆T ) is defined as the mean of ∆tj over all M

attributes and N interpolation points (i.e. ∆T = 1
NM

∑N
t=1

∑M
j=1 ∆tj).

∆tj = ||Cj(G(wt))− Cj(G(w0))− t ∗ (Cj(G(w1))− Cj(G(w0)))||2 (4.5)

In the following sections, we first evaluate effect of linearity on appplying HSR, by measuring

ALS. Then we show it’s application in measuring edits in images. We use StyleGAN2-ADA

model as the baseline trained on FFHQ-10k for results in the rest of this section.

ALS Evaluation. Our proposed HSR is able to provide a smooth structure to the latent
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Figure 4.6: Worst 30 Images according to the Mahalanobis distance to Inception moments of
respective datasets. Highlighted images show structural irregularities in the respective image
category (face/church).
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Figure 4.8: Comparison of Intermediate RGB outputs from the Generator. Upon adding HSR,
the intermediate RGB outputs are more similar to final images in terms of color as well as
structure.
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Figure 4.9: Linearity of the latent space: Here we show the transition images generated
by the intermediate latent code wt in the right and the corresponding attribute scores st
for for smile (row 1 and 2) and mt for male attribute (row 2). For brevity we have written
st = Cs(G(wt)) and mt = Cm(G(wt)).
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Figure 4.10: ALS score comparison upon adding HSR.
(Right): Mean ALS computed for each value of the in-
terpolation variable t. HSR is able to achieve a lower
value of ALS supporting the linearity induced by ALS.
(Bottom): ALS score computed for all the face at-
tributes separately.

Gender Smile Age Hair Bangs Beard Mean

SG2-ADA 1.38 1.48 1.18 1.96 1.95 1.60 1.59
+HSR 1.12 0.99 1.15 1.87 1.62 1.16 1.32
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space which is evident by the lower ALS scores of our model. To further analyse the structure

of the latent space we perform latent space interpolations and generate a sequence of images.

To quantitatively evaluate the interpolation results, we used the proposed ALS scores for the

interpolations. The lower ALS score represent the latent space is well structured and the

magnitude of the attributes are linearly correlated with the latent transformation. The ALS

scores for our model and baseline model in Table. 4.10 for following set of popular attributes

{gender, smile, age, hair, bangs, beard} [93, 92, 48]. Additionally, Fig. 4.10 (right) shows

the variation of the mean attribute delta (∆t,·) with the interpolation parameter t. We can

observe that in the middle region t ∈ [0.4, 0.8] the baseline model has high deviation from

linear behaviour, which is significantly less in our HSR regularized model. This is also seen

quantitatively through proposed ALS-attribute score, in which our model outperforms baseline

by 15% of relative improvement. We can observe that the interpolations generated using the

HSR results in smooth transitions and has high visual quality throughout the interpolation.

The StyleGAN2+ADA model without HSR has sudden transitions in between and has some

artifacts present (ref. Fig. 4.1).

Editability. The semantically rich structure of the latent space is widely used for performing

semantic edits on the generated images [93, 1, 118, 84, 125, 4]. For instance, if we have to add

the attribute smile to the generated face image, one can edit the latent code as wedit = w+αd

where α is edit strength and d is the direction for the smile attribute edit operation. However,

often, the attribute scores of the edits performed by such methods does not change linearly with

the edit strength parameter α as observed in Fig. 4.11. To this end, we perform the following

experiment: Given an input source image I0, we first perform attribute edit on it using latent

space transformation to obtain I1 using an existing approach [93]. Then, we use the latent code

optimization to find the corresponding latent codes w0 and w1 in the latent space. Finally, we

followed the same approach explained in Sec. 4.3.3 to generate intermediate images It using wt
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Figure 4.11: Applying HSR improves the linearity of change in attributes. Here we
show improved linearity for “Young” and “Smile” attributes. Plots show attribute score on
Y-axis, interpolation variable t on X-axis.

for t{∈ 0, 1
N
, 2
N
, ...1}. The results of the interpolation for edits are shown in Fig. 4.11. We

compared StyleGAN2-ADA with and without HSR in this experiment. One can observe that in

all the cases, adding HSR resulted in added linearity in the attribute scores plots. This property

is highly desired in editing methods as it provides a fine-grained control over the attributes in

the generated images. Also, observe that both the models evaluated are following the linear

line closely in the first two examples. This suggests that the transitions along the age attribute

is much more interpretable as it follows linearity. In all the three examples the model with

HSR is able to approximate the linear line the better than the baseline without HSR. From the
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images, we can visually observe that the interpolations produced smooth transitions and their

is no sudden jump in the attribute when using HSR. Also note that, the first and last images

from both the models do not match “pixel perfectly”, as they is generated by optimization of

latent code by different models (with and without HSR).

4.4 Chapter Summary

We proposed a novel, hierarchical semantic regularizer called HSR which allows us to regularize

the latent representations in StyleGANs by aligning them to powerful ones learnt by state of

the art classifiers trained on large datasets. HSR is shown to significantly improve the quality

of the generated images, especially those created via linear interpolation between attributes

corresponding to real images. It further has a desirable property that the latent attribute space

becomes more linear. To measure linearity, a novel metric Attribute Linearity Score (ALS)

was introduced. Copious experiments on standard benchmarks validate the benefits of HSR

and demonstrate statistically significant improvement in the quality of synthesized images. This

leads us to some interesting avenues for the future work: Enforcing structural priors (e.g . linear)

in the latent space manifold while training a GAN, which can lead to easier and fine-grained

attribute editing.
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Chapter 5

Conclusion

In this thesis, we explored properties of self-supervised pretraining to solve the problems of

landmark estimation and improving image generation in GANs.

For the task of landmark estimation, we rely on the emergence of equivariance in the SSL

pretraining methods. We find that SSL methods which do not use negative images have an

emergent dense correspondence tracking ability. Such a setup saves the cost of compute, in-

curred by other SSL pretraining methods [19]. Having established this property, we propose

a method to have a finer control over the feature dimensions of the output feature map of

the pretraining network, thus enabling the training of the (few-shot) supervised training for

landmark estimation with lesser compute cost. We demonstrate the superiority of our method

on the 4 different challenging datasets. Our methods generalizes across scale variations of the

face.

Next, we tackle the problem unnatural image generation from generative adversarial net-

works (GAN). For this task, we utilize the natural-image prior learnt by SSL. We propose a

regularizer to align the intermediate feature spaces of the generator and the pretrained feature

extractor at different levels of feature hierarchy. This not only improves the image generation,

but also smoothens the latent space of the generator, which has applications in controlled at-

tribute editing of the images. We show this by proposing a metric, Attribute Linearity Score

(ALS) which measures the linearity of the latent space w.r.t. image attributes.

Future Directions. Having shown the applications of SSL pretrained networks to solve both

discriminative and generative tasks, the next property to explore in SSL pretrained network

is that of its relation with human visual system. This opens the doors to have them as proxy

for humans to evaluate similarities between images which leads to design of newer evaluation

metrics to analyze images. Current metrics to analyze generated images (for eg. FID) use
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networks trained with object classification as task. This leads to task bias and to favor certain

classes in the generated images. The task bias can be corrected by employing pretrained

networks from SSL which follow generic objectives.

The recent advancements by the Diffusion Models (DM) spark up the question of combining

HSR with Diffusion Models. While DM having diverse and realistic outputs, we have not yet

seen unsupervised attribute specific interpretations out of its latent space. As compared to that,

GAN has seen more progress on the nature of its latent space and how can it be manipulated

to extract attribute-specific edits out of it [92, 84, 112]. Hence, it is an important open problem

to investigate the latent space of large DMs, such as Stable Diffusion [90], to search for the

attribute-specific interpretations. As there is “linearity of attribute-space” interpretation in

StyleGAN, a parallel interpretation of DM’s latent space can lead to a latent-space smoothening

technique to obtain consistent outputs.
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